Spin-Center Shift-Enabled Direct Enantioselective α-Benzylation of Aldehydes with Alcohols.

نویسندگان

  • Eric D Nacsa
  • David W C MacMillan
چکیده

Nature routinely engages alcohols as leaving groups, as DNA biosynthesis relies on the removal of water from ribonucleoside diphosphates by a radical-mediated "spin-center shift" (SCS) mechanism. Alcohols, however, remain underused as alkylating agents in synthetic chemistry due to their low reactivity in two-electron pathways. We report herein an enantioselective α-benzylation of aldehydes using alcohols as alkylating agents based on the mechanistic principle of spin-center shift. This strategy harnesses the dual activation modes of photoredox and organocatalysis, engaging the alcohol by SCS and capturing the resulting benzylic radical with a catalytically generated enamine. Mechanistic studies provide evidence for SCS as a key elementary step, identify the origins of competing reactions, and enable improvements in chemoselectivity by rational photocatalyst design.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Light‐Driven Enantioselective Organocatalytic β‐Benzylation of Enals

A photochemical organocatalytic strategy for the direct enantioselective β-benzylation of α,β-unsaturated aldehydes is reported. The chemistry capitalizes upon the light-triggered enolization of 2-alkyl-benzophenones to afford hydroxy-o-quinodinomethanes. These fleeting intermediates are stereoselectively intercepted by chiral iminium ions, transiently formed upon condensation of a secondary am...

متن کامل

Enantioselective Formal α‐Methylation and α‐Benzylation of Aldehydes by Means of Photo‐organocatalysis

Detailed herein is the photochemical organocatalytic enantioselective α-alkylation of aldehydes with (phenylsulfonyl)alkyl iodides. The chemistry relies on the direct photoexcitation of enamines to trigger the formation of reactive carbon-centered radicals from iodosulfones, while the ground-state chiral enamines provide effective stereochemical control over the radical trapping process. The ph...

متن کامل

Role of quaternary ammonium salts as new additives in the enantioselective organocatalytic β-benzylation of enals.

We report herein the efficiency of quaternary ammonium salts as co-catalysts in organocatalytic Michael reactions involving iminium activation of α,β-unsaturated aldehydes. The enantioselective formal benzylation of these substrates has been optimized and used to rationalize the role of the ammonium salts in these processes.

متن کامل

Enantioselective α-benzylation of aldehydes via photoredox organocatalysis.

The first enantioselective aldehyde α-benzylation using electron-deficient aryl and heteroaryl substrates has been accomplished. The productive merger of a chiral imidazolidinone organocatalyst and a commercially available iridium photoredox catalyst in the presence of household fluorescent light directly affords the desired homobenzylic stereogenicity in good to excellent yield and enantiosele...

متن کامل

Continuous-flow enantioselective α-aminoxylation of aldehydes catalyzed by a polystyrene-immobilized hydroxyproline

The application of polystyrene-immobilized proline-based catalysts in packed-bed reactors for the continuous-flow, direct, enantioselective α-aminoxylation of aldehydes is described. The system allows the easy preparation of a series of β-aminoxy alcohols (after a reductive workup) with excellent optical purity and with an effective catalyst loading of ca. 2.5% (four-fold reduction compared to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 140 9  شماره 

صفحات  -

تاریخ انتشار 2018